Z-matrix (mathematics) - definitie. Wat is Z-matrix (mathematics)
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Z-matrix (mathematics) - definitie

SQUARE MATRIX WHOSE OFF-DIAGONAL ENTRIES ARE NONPOSITIVE
Stoquastic

Z-matrix (mathematics)         
In mathematics, the class of Z-matrices are those matrices whose off-diagonal entries are less than or equal to zero; that is, the matrices of the form:
MATRIX MATH         
  • The vectors represented by a 2-by-2 matrix correspond to the sides of a unit square transformed into a parallelogram.
  • orientation]], since it turns the counterclockwise orientation of the vectors to a clockwise one.
  • 150px
  • 150px
  • 150px
  • An example of a matrix in Jordan normal form. The grey blocks are called Jordan blocks.
  • An undirected graph with adjacency matrix:
<math display="block">\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}.</math>
  • Two different Markov chains. The chart depicts the number of particles (of a total of 1000) in state "2". Both limiting values can be determined from the transition matrices, which are given by <math>
\begin{bmatrix}
 0.7 & 0\\
 0.3 & 1
\end{bmatrix}</math> (red) and <math>
\begin{bmatrix}
 0.7 & 0.2\\
 0.3 & 0.8
\end{bmatrix}</math> (black).
  • Schematic depiction of the matrix product '''AB''' of two matrices '''A''' and '''B'''.
  • 125px
  • indefinite]].
  • 125px
  • 150px
  • 175px
RECTANGULAR ARRAY OF NUMBERS, SYMBOLS, OR EXPRESSIONS, ARRANGED IN ROWS AND COLUMNS
Matrix (Mathematics); Matrix (math); Submatrix; Matrix theory; Matrix (maths); Submatrices; Matrix Theory and Linear Algebra; Infinite matrix; Square (matrix); Matrix operation; Square submatrix; Matrix(mathematics); Real matrix; Matrix math; Matrix index; Equal matrix; Matrix equation; Matrix (computer science); Matrix notation; Empty matrix; Real matrices; Principal submatrix; Array (mathematics); Matrix power; Complex matrix; Complex matrices; Applications of matrices; Rectangular matrix; Uniform matrix
<language> An early system on the UNIVAC I or II. [Listed in CACM 2(5):1959-05-16]. (1997-02-27)
Logical matrix         
  • Multiplication of two logical matrices using [[boolean algebra]].
MATRIX WITH ENTRIES FROM THE BOOLEAN DOMAIN B = {0, 1}
Binary matrix; (0,1) matrix; (0,1)-matrix; (0,1)-matrices; 0,1-matrix; 0-1 matrix; Matrix logic; Zero-One matrix; Logical vector; Logical matrices
A logical matrix, binary matrix, relation matrix, Boolean matrix, or (0, 1) matrix is a matrix with entries from the Boolean domain Such a matrix can be used to represent a binary relation between a pair of finite sets.

Wikipedia

Z-matrix (mathematics)

In mathematics, the class of Z-matrices are those matrices whose off-diagonal entries are less than or equal to zero; that is, the matrices of the form:

Z = ( z i j ) ; z i j 0 , i j . {\displaystyle Z=(z_{ij});\quad z_{ij}\leq 0,\quad i\neq j.}

Note that this definition coincides precisely with that of a negated Metzler matrix or quasipositive matrix, thus the term quasinegative matrix appears from time to time in the literature, though this is rare and usually only in contexts where references to quasipositive matrices are made.

The Jacobian of a competitive dynamical system is a Z-matrix by definition. Likewise, if the Jacobian of a cooperative dynamical system is J, then (−J) is a Z-matrix.

Related classes are L-matrices, M-matrices, P-matrices, Hurwitz matrices and Metzler matrices. L-matrices have the additional property that all diagonal entries are greater than zero. M-matrices have several equivalent definitions, one of which is as follows: a Z-matrix is an M-matrix if it is nonsingular and its inverse is nonnegative. All matrices that are both Z-matrices and P-matrices are nonsingular M-matrices.

In the context of quantum complexity theory, these are referred to as stoquastic operators.